

Vinícius Roberto de Aguiar

RESISTÊNCIA DE INTERFACES SOLO-GEOSSINTÉTICO -DESENVOLVIMENTO DE EQUIPAMENTO E ENSAIOS

Tese de Doutorado

Tese apresentada ao programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil

> Orientador: Alberto de Sampaio Ferraz Jardim Sayão Co-orientadora: Anna Laura Lopes da Silva Nunes

> > Rio de Janeiro, 25 de Fevereiro de 2008.

Vinícius Roberto de Aguiar

Resistência de Interfaces Solo-Geossintético

- Desenvolvimento de Equipamento e Ensaios

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Alberto de Sampaio Ferraz Jardim Sayão Orientador

Orientador Departamento de Engenharia Civil - PUC-Rio

Prof^a. Anna Laura Lopes da Silva Nunes Co-orientador COPPE/UFRJ

Prof. Ennio Marques Palmeira UnB

Prof^a. Ana Cristina Castro Fontenla Sieira UERJ

> Prof. Maurício Ehrlich COPPE/UFRJ

Prof. Sérgio Augusto Barreto da Fontoura Departamento de Engenharia Civil - PUC-Rio

Prof. Pedricto Rocha Filho Departamento de Engenharia Civil - PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 25 de Fevereiro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Vinícius Roberto de Aguiar

Graduou-se em Engenharia Civil pela Universidade Federal do Rio Grande do Sul - UFRGS em 2000. Realizou estágio de pesquisa no Laboratório de Mecânica dos Solos - LMS auxiliando em projetos de pesquisa de geotecnia, em 1997/2000. Ingressou no curso de mestrado em Engenharia (Geotecnia) naquela universidade. em 2001. Civil Desenvolveu pesquisa de laboratório sobre 0 desenvolvimento e calibração de um equipamento de ensaio de rampa para a obtenção de parâmetros de interface sologeossintético. Publicou artigos técnicos sobre o assunto em congressos nacionais. Ingressou no curso de doutorado em Engenharia Civil da PUC-Rio em 2003. É Engenheiro Civil da Engevix Engenharia S.A.

Ficha Catalográfica

Aguiar, Vinícius Roberto de

Resistência de Interfaces Solo-Geossintético -Desenvolvimento de Equipamento e Ensaios / Vinícius Roberto de Aguiar; orientador: Alberto de Sampaio Ferraz Jardim Sayão; co-orientadora: Anna Laura Lopes da Silva Nunes. - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2007.

373 f.; 30 cm

1. Tese de Doutorado - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas

1. Engenharia Civil - Teses. 2. Geossintéticos. 3. Equipamentos de Laboratório. 4. Interação Sologeossintético. 5. Parâmetros de Interface. I. Sayão, Alberto de Sampaio Ferraz Jardim. II. Nunes, Anna Laura Lopes da Silva. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Aos meus pais, Faustino e Tereza, minha irmã Viviane e Luciana, pelos exemplos, pelo apoio incondicional e incentivo, dedico este trabalho.

Agradecimentos

Ao Professor Alberto Sayão, pela atenção, amizade, confiança depositada e oportunidade.

A professora Anna Laura Nunes, pelo estímulo, conselhos, companheirismo, confiança depositada e principalmente pela amizade.

Aos funcionários do Laboratório de Geotecnia e meio Ambiente da PUC-Rio, em especial ao Engenheiro Willian e Amaury por estarem sempre dispostos a ajudar e a ensinar.

Aos funcionários do Laboratório Estrutura Euclides, José Nilson, Evandro e Aroldo, com quem convivi de forma mais direta durante toda a realização do meu trabalho e que sempre estiveram dispostos a me ajudar e pela grande amizade.

Aos funcionários do departamento Ana Roxo, Rita de Cássia e Cristiano que nunca mediram esforços para resolver as pendengas administrativas e pelo profissionalismo.

Aos colegas da PUC-Rio de forma geral, pela ajuda, motivação e os vários momentos de descontração. Em especial: Bernadete Lopes (Bê), Ana Carolina Campos, Alessandra Tavares de Castro e Marcelo Miqueletto.

Um agradecimento especial a Taíse Carvalho, Elisângela Oliveira, Suelen Rodrigues, Emiliana Guedes, Andrea Cynthia dos Santos, Algemiro Augusto Neto pela convivência. São pessoas com quem convivi nos últimos anos e a quem tenho um carinho especial.

A Luciana Correia Laurindo Martins Vieira, um agradecimento muito mais que especial pela cumplicidade, convivência, companheirismo e dedicação. É uma pessoa pela qual sinto muito carinho e que poderá contar sempre comigo esteja onde estiver.

A Huesker Ltda. pelo apoio financeiro e pela confiança depositada.

Ao CNPq pela bolsa de doutorado.

Aguiar, Vinícius Roberto de; Sayão, Alberto de Sampaio Ferraz Jardim; Nunes, Anna Laura Lopes da Silva. **Resistência de Interfaces Solo-Geossintético - Desenvolvimento de Equipamento e Ensaios**. Rio de Janeiro, 2007. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A demanda por melhores técnicas de dimensionamento incentivou o desenvolvimento de estudos capazes de fornecer uma maior compreensão do comportamento dos geossintéticos quando inseridos na massa de solo. A interação solo-geossintético é complexa, sendo função das propriedades dos materiais utilizados, solo e geossintético, e expressa por meio dos parâmetros de adesão e ângulo de atrito de interface. O estudo da interação solo-geossintético pode ser realizado empregando-se ensaios de campo ou laboratório. Os ensaios de campo são considerados os mais representativos, pois simulam mais corretamente as condições e as solicitações in situ. Entretanto, são ensaios de custos elevados e de difícil execução. Apesar de alguns inconvenientes tais como o tamanho reduzido de amostra, os ensaios de laboratório têm custos mais acessíveis e são executados com maior facilidade. Os ensaios normalmente utilizados são os de arrancamento, cisalhamento (convencional, inclinado e com reforço inclinado) e rampa. Este trabalho apresenta o desenvolvimento de um novo equipamento capaz de executar três tipos de ensaios de ensaio de cisalhamento (convencional, inclinado e rampa), combinando-se diferentes caixas de ensaio e acessórios. Além do projeto e construção, o trabalho também apresenta os resultados de uma série ensaios de cisalhamento empregando-se um solo (areia) e três geossintéticos (uma geogrelha e duas geomembranas). Estes resultados permitiram a avaliação da acurácia do equipamento, estudo das condições de contorno e análise comparativa dos parâmetros de interface obtidos através dos três tipos de ensaio.

Palavras Chave

Geossintéticos, Interação Solo-Geossintético, Parâmetros de Interface, Ensaios de Laboratório. Aguiar, Vinícius Roberto de; Sayão, Alberto de Sampaio Ferraz Jardim; Lopes, Anna Laura Lopes da Silva. **Resistance of Interfaces Soilgeosynthetics - Development of Equipment and Tests**. Rio de Janeiro, 2007. DSC. Thesis - Departamento of Civil Engineering, Catholic University of Rio de Janeiro.

The demand for better techniques of sizing motivated the development of studies capable to supply a larger understanding of the behavior of the geosynthetics when inserted in the soil mass. The interaction soil-geosynthetics it is complex, being function of the properties of the used materials, soil and geossintético, and expresses through the adhesion and angle of interface attrition. The study of the interaction soil-geosynthetics it can be accomplished through field test or laboratory. The field test are considered the most representative, because they simulate the conditions and the solicitations in situ more correctly. However, they are tests of high costs and of difficult execution. In spite of some such inconveniences as the sample size, the laboratory test have more accessible costs and they are executed with larger easiness. The tests usually used they are the one of pullout and direct shear (conventional, with tilted reinforcement, tilted and ramp). This work presents the development of a new equipment capable to execute three types of direct shear test (conventional, tilted and ramp), combining different test boxes and accessories. Besides the project and construction the work also presents the results of a series direct shear test being used une soil types (sand) and tree geosynthetics (one geogrids and two geomembranes), executed in the developed equipment. These results allowed the evaluation of the performance of the equipment, study of the contour conditions and comparative analysis of the interface parameters obtained through the three test types.

Keywords

Geosynthetics, Soil-Geosynthetics Interaction, Laboratory Tests.

Sumário

1 . Introdução	36
1.1. Motivação	36
1.2. Objetivos	38
1.3. Escopo da Tese	39
2. Resistência da Interface Solo-Geossintético	40
2.1. Considerações Iniciais	40
2.2. Utilização de Geossintéticos	41
2.3. Mobilização da Resistência da Interface Solo-Geossintético	46
2.3.1. Atrito na Interface Solo-Reforço	46
2.3.2. Tração no Reforço	47
2.3.3. Arrancamento do Reforço	48
2.4. Avaliação da Resistência da Interface Solo-Geossintético	48
2.5. Ensaios Solo-Gossintético	50
2.5.1. Ensaio de Arrancamento	51
2.5.2. Ensaio de Cisalhamento Direto Convencional	55
2.5.3. Ensaios de Cisalhamento Direto com o Reforço Inclinado	56
2.5.4. Ensaio de Rampa	58
2.5.5. Ensaio de Cisalhamento Direto Inclinado	59
2.6. Considerações Finais	60
3 . Ensaios para Avaliação da Resistência da Interface	62
3.1. Considerações Iniciais	62
3.2. Ensaio de Rampa	62
3.2.1. Métodos para ensaio de Rampa	64
3.2.2. Equipamentos de ensaio de Rampa	65
3.2.3. Fatores de influência dos ensaios de rampa associados ao	
equipamento	73
3.2.4. Fatores de influência dos ensaios de Rampa associados aos	
materiais	79

3.3. Ensaio de Cisalhamento Direto	87
3.3.1. Métodos para ensaio de Cisalhamento Direto	89
3.3.2. Equipamentos de ensaio de Cisalhamento Direto	90
3.3.3. Fatores de influência dos ensaios de Cisalhamento Direto	
associados ao equipamento	99
3.3.4. Fatores que influenciam os ensaios de Cisalhamento Direto	
associados aos materiais	110
3.4. Considerações Finais	116
4 . Desenvolvimento do Equipamento	120
4.1. Considerações Iniciais	120
4.2. Estrutura Principal	120
4.3. Componentes do Equipamento	124
4.3.1. Caixas de Ensaio e Garras	125
4.3.2. Sistema de Basculamento	134
4.3.3. Sistema de Aplicação de Força Normal	134
4.3.4. Sistema de Aplicação de Força Cisalhante	140
4.3.5. Instrumentação	143
4.4. Configurações de Ensaio	145
4.4.1. Ensaios de Rampa	146
4.4.2. Ensaios de Cisalhamento Direto Inclinado	151
4.4.3. Ensaio de Cisalhamento Direto Convencional	155
4.4.4. Ensaio de Arrancamento	161
4.5. Testes Preliminares	164
4.6. Limitações de Uso	166
4.7. Considerações Finais	172
5 Dragrama Evnorimental	170
5. Flogrania Experimental	173
5.1. Considerações iniciais	173
	174
5.2.1. Solo	174
5.2.2. GEUSSIIILEILUUS	1/5
5.3. Preparação dos Corpos de Prova	1//
5.4. Procedimento de Ensalo	185

5.4.1. Ensaio de Rampa	185
5.4.2. Ensaio de Cisalhamento Direto Convencional	186
5.4.3. Ensaio de Cisalhamento Direto Inclinado	188
5.5. Metodologias de Análises de Resultados	190
5.5.1. Ensaio de Rampa	190
5.5.2. Cisalhamento Direto Convencional e Inclinado	191
5.6. Programa de Ensaios	192
5.6.1. Ensaios da Tese	193
5.6.2. Ensaios Pré-existentes	197
5.7. Considerações Finais	197
6 . Resultados e Análises: Verificações Iniciais	199
6.1. Considerações Iniciais	199
6.2. Critério de Ruptura Unificado	200
6.3. Precisão do Equipamento	204
6.4. Influência das Dimensões das Caixas de Ensaio	210
6.4.1. Variação da Espessura de Solo no Interior das Caixas de Ensa	aio211
6.4.2. Variação da Área de Contato	220
6.5. Influência da Metodologia de Ensaio	228
6.6. Desgaste e Dano na Geomembrana	232
6.7. Considerações Finais	236
7 . Resultados e Análises: Ensaios de Rampa	238
7.1. Considerações Iniciais	238
7.2. Influência da Tensão Confinante	239
7.3. Influência da Densidade Relativa	240
7.3.1. Interface Solo-Solo	240
7.3.2. Interface Solo-Geogrelha	243
7.3.3. Interface Solo-Geomembrana	245
7.3.4. Eficiências de Interfaces	250
7.4. Influência do Tipo de Solo	253
7.4.1. Interface Solo-Solo	253
7.4.2. Interface Solo-Geogrelha	255
7.4.3. Interface Solo-Geomembrana	258

7.4.4. Eficiências de Interface	260
7.5. Influência do Tipo de Geossintético	261
7.6. Considerações Finais	262

8 . Resultados e Análises: Ensaios de Cisalhamento Direto Convencional

	264
8.1. Considerações Iniciais	264
8.2. Influência da Tensão Confinante	264
8.3. Influência do Tipo de Solo	265
8.3.1. Interface Solo-Solo	265
8.3.2. Interface Solo-Geogrelha	267
8.3.3. Interface Solo-Geomembrana	270
8.3.4. Eficiências de Interfaces	272
8.4. Influência do Tipo de Geossintético	273
8.5. Considerações Finais	274

9. Resultados e Análises: Ensaio de Cisalhamento Direto Inclinado	276
9.1. Considerações Iniciais	276
9.2. Influência da Tensão Confinante	277
9.3. Influência do Tipo de Solo	278
9.3.1. Interface Solo-Solo	278
9.3.2. Interface Solo-Geogrelha	283
9.3.3. Interface Solo-Geomembrana	286
9.3.4. Eficiências de Interfaces	290
9.4. Influência do Tipo de Geossintético	294
9.5. Considerações Finais	296
10 . Resultados e Análises: Comparação dos Diferentes Ensaios	297
10.1. Considerações Iniciais	297
10.2. Influência do Tipo de Ensaio	298
10.3. Considerações Finais	306
11 . Conclusões e Sugestões	308
11.1. Conclusões	308

11.2. Sugestões para Futuras Pesquisas	312
Referências Bibliográficas	313
Apêndice I. Configurações de Ensaio de Rampa	320
Apêndice II. Configurações de Ensaio de Cisalhamento Direto Inclinad	do331
Apêndice III. Configurações de Ensaio de Cisalhamento Direto Convencional	338
Apêndice IV. Configurações de Ensaio de Arrancamento	347
Apêndice V. Limitações de Uso	350
Apêndice VI. Aguiar (2003)	353
Apêndice VII. Rezende (2005)	358
Apêndice VIII. Tavares (2008)	362
Apêndice IX. Análise de Distribuição de Tensões	366
Anexo I. Critérios de Ruptura	371

Lista de Figuras

Figura 1 - Modos de interação e movimentos relativos solo-geossintético em um
muro de solo reforçado (Palmeira, 1987)
Figura 2 - Sistema de cobertura multicamadas (Melo et al. 2003)
Figura 3 - Ziggurates
Figura 4 - Consumo de geossintéticos em milhões de metros quadrados por ano na
América do Norte (Koerner, 2000)42
Figura 5 - Valor aproximado, em milhões de dólares, do consumo de
geossintéticos na América do Norte (Koerner, 2000)
Figura 6 - Exemplos de utilização de geossintéticos como reforçado44
Figura 7 - Encontro de pontes
Figura 8 - Exemplos de utilização de geossintéticos como material de
impermeabilização45
Figura 9 - Esquema de um sistema de cobertura e impermeabilização de um aterro
de resíduos sólidos46
Figura 10 - Modos de interação e movimentos relativos solo-geossintético47
Figura 11 - Ponto de atuação de T _{máx} . para muros reforçados (Christopher et al.,
1990)
Figura 12 - Obtenção de parâmetros de resistência de interface. (a) curvas tensão
cisalhante x deslocamento horizontal e (b) envoltória de resistência49
Figura 13 - Ensaios para geossintéticos (Sayão, 2004)50
Figura 14 - Esquema de um ensaio de arrancamento51
Figura 15 - Equipamento para ensaios de arrancamento do CEDEX-Madri
(Castro, 1999)
Figura 16 - Influência da manga nos ensaios de arrancamento (Lopes e Ladeira,
1996)
Figura 17 - Esquema de um ensaio de cisalhamento direto
Figura 18 - Preparação de um ensaio de cisalhamento direto para uma interface
solo-geogrelha (Sieira, 2003)
Figura 19 - Esquema de um ensaio de cisalhamento com reforço inclinado 56
Figura 20 - Preparação de um ensaio de cisalhamento direto com reforço inclinado
para uma interface solo-geogrelha (Sieira, 2003)57

Figura 60 - Efeito da dimensão do equipamento nos resultados de ensaios de
cisalhamento direto para interfaces areia - geogrelha (Adaptado de Ingold,
1984)
Figura 61 - Efeito das dimensões do equipamento de cisalhamento direto para
geogrelha e areia (Adaptado de Saez, 1997)
Figura 62 - Influência da espessura de solo da caixa superior na interface areia-
geotêxtil em ensaios de cisalhamento direto (Gourc et al. 1996)106
Figura 63 - Influência do suporte no atrito entre a geogrelha e a areia (Gourc et al.
1996)
Figura 64 - Condições de fronteiras típicas em ensaios de cisalhamento direto
(Palmeira, 1999)
Figura 65 - Ensaios de cisalhamento direto em areia densa com diferentes
condições de fronteira (Palmeira, 1987)109
Figura 66 - Representação esquemática do aparelho de cisalhamento direto em
que a carga é aplicada de cima para baixo no topo da caixa superior
(Nakamura et al., 1999) - Configuração B
Figura 67 - Resultados dos ensaios de cisalhamento direto obtidos com o
equipamento da Figura 56 e o equipamento da Figura 66 (Nakamura et al.,
1999)
Figura 68 - Materiais utilizados por Lee e Manjunath (2000)112
Figura 69 - Efeito da rigidez do geossintético (Jewell e Wroth, 1987)113
Figura 70 - Efeito do confinamento na rigidez de geossintéticos (Gomes, 1993).
Figura 71 - Efeito da rugosidade na resistência da interface (Izgin e Wastin, 1998).
Figura 72 - Estrutura principal do equipamento desenvolvido121
Figura 73 - Ligação do pórtico
Figura 74 - Vista geral do ponto de apoio do sistema de aplicação de força
cisalhante dos ensaios de cisalhamento, arrancamento e fluência122
Figura 75 - Plataforma de ensaios
Figura 76 - Dobradiça
Figura 77 - Local de fixação do sistema de basculamento124
Figura 78 - Conjunto de caixas de ensaio 1 - Versão original125

Figura 79 - Detalhe da roldana da caixa superior sobre o trilho da caixa inferior.
Figura 80 - Garra do conjunto 1 de caixas - Versão original
Figura 81 - Caixas de ensaio com altura de 10 cm127
Figura 82 - Novo sistema trilho roldana
Figura 83 - Sistema de regulagem do espaçamento das caixas de ensaio129
Figura 84 - Limitador de deslocamento (esticado)129
Figura 85 - Conjunto 2 de caixas de ensaio131
Figura 86 - Detalhe do redutor de comprimento da caixa inferior131
Figura 87 - Conjunto 3 de caixas de ensaio131
Figura 88 - Conjunto 4 de caixas de ensaio131
Figura 89 - Conjunto de caixas de ensaio número 5132
Figura 90 - Conjunto de caixas de ensaio número 6132
Figura 91 - Garras das caixas de ensaio: (a) garra dos conjuntos de caixas de
ensaio 2 e 4, (b) garra do conjunto de ensaio 3 e (c) garra dos conjuntos de
caixas ensaio 5 e 6
Figura 92 - Garra móvel do conjunto 6 de caixas de ensaio (Becker, 2006) 134
Figura 93 - Sistema de Basculamento: (a) Detalhe da fixação da talha e (b)
Detalhe da fixação da corrente da talha135
Figura 94 - Tampas do sistema de confinamento. (a) caixa superior do conjunto 2
e (b) caixa superior do conjunto 4
Figura 95 - Sistema de confinamento dos ensaios de Rampa e Cisalhamento
Direto Inclinado. (a) Ensaio de rampa com tensão confinante de 3,3kPa e (b)
Ensaio de rampa com tensão confinante de 4,7kPa136
Figura 96 - Ensaio de rampa sob tensão confinante de 3,3kPa137
Figura 97 - Vista lateral do sistema de confinamento do ensaio de cisalhamento
direto convencional
Figura 98 - Vista frontal do sistema confinamento do ensaio de cisalhamento
direto convencional
Figura 99 - Placa de reação para a o conjunto de caixa superior do conjunto 2139
Figura 100 - Detalhe da rótula do ponto de reação
Figura 101 - Vista superior do pendural de carga

Figura 130 - Vista frontal da configuração de cisalhamento direto convencional
CC50Q-10157
Figura 131 - Vista frontal da configuração de cisalhamento direto convencional
CC100Q-10157
Figura 132 - Vista lateral da configuração de cisalhamento direto convencional
CC50Q-10158
Figura 133 - Vista superior da configuração de cisalhamento direto convencional
CC50Q-10158
Figura 134 - Vista frontal da configuração de cisalhamento direto convencional
CC120R-30159
Figura 135 - Vista lateral da configuração de cisalhamento direto convencional
CC120R-30159
Figura 136 - Vista superior da configuração de cisalhamento direto convencional
CC120R-30
Figura 137 - Configurações das caixas e posicionamento do geossintético em
ensaios de cisalhamento direto160
Figura 138 - Vista superior da configuração de arrancamento162
Figura 139 - Vista frontal da configuração de arrancamento162
Figura 140 - Vista lateral da configuração de arrancamento163
Figura 141 - Configuração das caixas de ensaio de arrancamento AR120R-30.163
Figura 142 - Avaliação do sistema de aplicação de força cisalhante 164
Figura 143 - Ensaio do sistema de aplicação de força cisalhante165
Figura 144 - Resultados típicos dos testes de avaliação de desempenho do sistema
de aplicação de força cisalhante
Figura 145 - Condição de tombamento do sistema de confinamento com a
inclinação da plataforma de ensaios (Aguiar, 2003)
Figura 146 - Exemplo de análise de tombamento das caixas de ensaio do conjunto
1
Figura 147 - Ângulos críticos ao tombamento para o conjunto 2 de caixas de
ensaio170
Figura 148 - Ângulos críticos ao tombamento para o conjunto 3 de caixas de
ensaio170
Figura 149 - Ângulos críticos ao tombamento para o conjunto 4 de caixas de
ensaio171

Figura 150 - Ângulos críticos ao tombamento para o conjunto 5 de caixas de
ensaio171
Figura 151 - Areia de Ipanema
Figura 152 - Curva granulométrica da areia de Ipanema
Figura 153 - Geossintéticos utilizados na pesquisa: (a) geomenbrana Cipageo, (b)
geogrelha Fortrac e (c) geomembrana Polimanta177
Figura 154 - Recomendação de descarte da Norma DIN EN 963178
Figura 155 - Amostra de geogrelha na caixa média quadrada (dimensões 0,70 x
0,90m)
Figura 156 - Compactadores utilizados para as densidades relativas de 45 e 90%.
Figura 157 - Seqüência construtiva de preparação de um corpo de prova - caixa
inferior
Figura 158 - Geogrelha na posição de ensaio
Figura 159 - Seqüência construtiva de preparação de um corpo de prova - caixa
superior
Figura 160 - Colocação das placas de confinamento
Figura 161 - Procedimento para espaçar a caixa de ensaio
Figura 162 - Posição do medidor de ângulo de base magnética182
Figura 163 - Bloqueio da caixa superior com grampos tipo C183
Figura 164 - Instalação dos anéis de carga
Figura 165 - Instalação dos cabos de aço nos anéis de carga da caixa superior 183
Figura 166 - Instalação dos suportes das roldanas e da plataforma184
Figura 167 - Nivelamento da plataforma
Figura 168 - Ensaio de rampa finalizado - vista lateral
Figura 169 - Resultado típico de um ensaio de rampa
Figura 170 - Aplicação de tensão normal em um ensaio de interface solo-
geogrelha ($\sigma_c=8,4$ kPa)187
Figura 171 - Aplicação de tensão cisalhante
Figura 172 - Resultado típico de um ensaio de cisalhamento direto188
Figura 173 - Inclinação da plataforma para ensaio de cisalhamento direto
inclinado. Observa-se o grampo tipo C impedindo o movimento da caixa
superior
Figura 174 - Resultado típico de um ensaio de cisalhamento direto inclinado189

Figura 175 - Esquema de forças do ensaio de rampa190
Figura 176 - Esquema de forças do ensaio de cisalhamento direto inclinado192
Figura 177 - Resultados típicos de ensaios de rampa - interface Ar15 x Ar15200
Figura 178 - Resultados típicos de ensaios de cisalhamento direto convencional -
interface Ar15 x GG35
Figura 179 - Resultados típicos de ensaios de cisalhamento direto inclinado - Ar15
x GMPL
Figura 180 - Fases do movimento do elemento superior da interface com o
aumento da inclinação α do plano inclinado: (a) fase 1, fase estática; (b) fase
2, fase transitória; (c) fase 3, fase de deslizamento não estabilizado (Pitanga
<i>et al.</i> , 2007)
Figura 181 - Diferentes mecanismos de deslizamento observados nos ensaios: (a)
deslizamento súbito; (b) deslizamento irregular; (c) deslizamento gradual.203
Figura 182 - Fatores que influenciam os resultados dos ensaios210
Figura 183 - Distribuição de tensões para a configuração de ensaio de rampa
RP25Q-10
Figura 184 - Variação da altura de solo na caixa de ensaio - Configuração RP25Q-
10
Figura 185 - Comparação dos resultados em termos de envoltória de resistência
para a configuração RP25Q-10, interfaces Ar15 x Ar15214
Figura 186 - Comparação dos resultados em termos de envoltória de resistência
para a configuração RP50Q-10, interfaces Ar15 x Ar15215
Figura 187 - Comparação dos resultados em termos de envoltória de resistência,
para relação L/h = 20, interfaces Ar15 x Ar15216
Figura 188 - Comparação dos resultados em termos de envoltória de resistência
para a configuração RP25Q-10, interfaces Ar15 x GG35216
Figura 189 - Comparação dos resultados em termos de envoltória de resistência
para a configuração RP50R-10, interfaces Ar15 x GG35
Figura 190 - Comparação dos resultados em termos de envoltória de resistência,
para relação L/h = 20, interfaces Ar15 x GG35
Figura 191 - Comparação dos resultados em termos de envoltória de resistência
para a configuração RP25Q-10, interfaces Ar15 x GMPL218
Figura 192 - Comparação dos resultados em termos de envoltória de resistência,
para relação L/h = 20, interfaces Ar15 x GMPL

Figura 193 - Variação da forma e tamanho da área de contato220
Figura 194 - Comparação dos resultados de ensaios de rampa, em termos de
ângulo de atrito secante, para interfaces solo-solo
Figura 195 - Avaliação do aumento da área de contato em ensaios de rampa para
interfaces solo-solo em termos de envoltória de resistência223
Figura 196 - Avaliação do aumento da área de contato em ensaios de rampa para
interfaces solo-geogrelha em termos de envoltória de resistência
Figura 197 - Avaliação do aumento da área de contato em ensaios de rampa para
interfaces solo-geomembrana em termos de envoltória de resistência 224
Figura 198 - Avaliação do aumento da área de contato em ensaios de cisalhamento
direto convencional para interfaces solo-solo em termos de envoltória de
resistência
Figura 199 - Avaliação do aumento da área de contato em ensaios de cisalhamento
direto convencional para interfaces solo-geogrelha em termos de envoltória
de resistência
Figura 200 - Avaliação do aumento da área de contato em ensaios de cisalhamento
direto convencional para interfaces solo-solo em termos de envoltória de
resistência para plataforma de ensaios inclinada de 18º226
Figura 201 - Avaliação do aumento da área de contato em ensaios de cisalhamento
direto convencional para interfaces solo-geogrelha em termos de envoltória
de resistência para plataforma de ensaios inclinada de 18º226
Figura 202 - Avaliação do aumento da área de contato em ensaios de cisalhamento
direto convencional para interfaces solo-geomembrana em termos de
envoltória de resistência para plataforma de ensaios inclinada de 4,5°227
Figura 203 - Envoltórias de resistência solo-solo obtidas com o equipamento com
faces normais e com faces inclinadas
Figura 204 - Envoltórias de resistência solo-geogrelha obtidas com o equipamento
com faces normais e com faces inclinadas
Figura 205 - Envoltórias de resistência solo-geomembrana obtidas com o
equipamento com faces normais e com faces inclinadas
Figura 206 - Esquema interno da caixa superior de ensaio da configuração
RP25Q-10 utilizado na avaliação da metodologia de ensaio com faces: (a)
normais e (b) inclinadas
Figura 207 - Face inclinada frontal

Figura 208 - Ensaios de rampa para interfaces solo-geomembrana: amostras com
defeito e muito uso
Figura 209 - Ensaios de rampa para interfaces solo-geomembrana: amostras com
uso controlado e novas
Figura 210 - Comparação entre os resultados dos ensaios de rampa para interfaces
solo-geomembrana
Figura 211 - Ensaios de cisalhamento direto para interfaces solo-geomembrana na
configuração CI25Q-10
Figura 212 - Ensaios de cisalhamento inclinado (plataforma inclinada de 4,5
graus) para interfaces solo-geomembrana na configuração CI25Q-10 235
Figura 213 - Ensaio de cisalhamento inclinado (plataforma inclinada de 9º) para
interfaces solo-geomembrana na configuração CI25Q-10236
Figura 214 - Curvas deslocamento vs tensão cisalhante das interfaces areia x areia
nas densidades relativas de 15, 45 e 90% e tensão confinante de 2,1kPa, em
ensaios de rampa241
Figura 215 - Influência do aumento da tensão confinante nos resultados de ensaios
de rampa para diferentes densidades relativas da interface areia-areia242
Figura 216 - Envoltórias de resistência das interfaces areia-areia nas densidades
relativas de 15, 45 e 90%, obtidas em ensaios de rampa242
Figura 217 - Curvas deslocamento vs tensão cisalhante das interfaces areia x
geogrelha nas densidade relativas de 15, 45 e 90% e tensão confinante de
2,1kPa em ensaios de rampa244
Figura 218 - Influência do aumento da tensão confinante nos resultados de ensaios
de rampa para diferentes densidades relativas da interface areia-geogrelha.
Figura 219 - Envoltórias de resistência das interfaces areia-geogrelha nas
densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa245
densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa
densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa
densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa
 densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa
 densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa
 densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa

- Figura 224 Envoltórias de resistência das interfaces areia-geomembrana Cipageo nas densidades relativas de 15, 45 e 90%, obtidas em ensaios de rampa....250

- Figura 227 Curvas deslocamento vs tensão cisalhante das interfaces areia-areia e brita-brita e tensão confinante intermediária, obtidas em ensaios de rampa.

- Figura 230 Envoltórias de ruptura das interfaces areia-geogrelha e britageogrelha para densidade relativa de 15%, obtidas em ensaios de rampa. .257
- Figura 232 Envoltórias de ruptura das interfaces areia-geomembrana e britageomembrana para densidade relativa de 15%, obtidas em ensaios de rampa. 259
- Figura 233 Envoltórias de resistência das interfaces com: (a) areia e (b) brita. 260

Figura 235 - Envoltórias de ruptura das interfaces areia-areia e brita-brita para
densidade relativa de 15%
Figura 236 - Curvas deslocamento vs tensão cisalhante das interfaces areia-
geogrelha e brita-geogrelha para tensão confinante de 1,8kPa em ensaios de
cisalhamento direto convencional
Figura 237 - Envoltórias de ruptura das interfaces areia-geogrelha e brita-
geogrelha para densidade relativa de 15% em ensaios de cisalhamento direto
convencional
Figura 238 - Curvas deslocamento vs tensão cisalhante das interfaces areia-
geomembrana (3,2kPa) e brita-geomembrana (2,4kPa) em ensaios de
cisalhamento direto convencional
Figura 239 - Envoltórias de ruptura das interfaces areia-geomembrana e brita-
geomembrana para densidade relativa de 15% em ensaios de cisalhamento
direto convencional
Figura 240 - Envoltórias de resistência obtidas de ensaios de cisalhamento direto
convencional das interfaces com areia (a) e brita (b)
Figura 241 - Influência da inclinação no valor da tensão cisalhante de ruptura. 278
Figura 242 - Curva deslocamento vs tensão cisalhante para interface areia-areia e
brita-brita para tensão confinante de 1,8kPa com a plataforma de ensaios
inclinada a 9°
Figura 243 - Curva deslocamento vs tensão cisalhante para interface areia-areia e
brita-brita para tensão confinante de 1,8kPa com a plataforma de ensaios
inclinada a 18°
Figura 244 - Envoltórias de ruptura das interfaces areia-areia e brita-brita para
densidade relativa de 15%, para plataforma inclinada a 9°
Figura 245 - Envoltórias de ruptura das interfaces areia-areia e brita-brita para
densidade relativa de 15%, para plataforma inclinada a 18°
Figura 246 - Envoltória de ruptura da interface areia-areia para densidade relativa
de 15%, plataforma inclinada a 18° e empregando a configuração RP50R-10.
Figura 247 - Curva deslocamento vs tensão cisalhante para interface areia-
geogrelha e brita-geogrelha para tensão confinante de 1,8kPa com a
plataforma inclinada a 9°

Figura 262 - Relação entre o ângulo de atrito secante e a tensão normal -
Interfaces Ar15xGMPL
Figura 263 - Envoltórias de Resistência dos diferentes ensaios para interfaces
Ar15xGMPL
Figura 264 - Trajetória das tensões normais e cisalhantes nos ensaios de rampa
(RP), cisalhamento direto convencional (CC) e inclinado (CI)
Figura 265 - Configuração de ensaio de rampa RP25Q-10 (vista frontal)
Figura 266 - Configuração de ensaio de rampa RP25Q-10 (vista lateral)
Figura 267 - Configuração de ensaio de rampa RP25Q-10 (vista superior) 322
Figura 268 - Configuração de ensaio de rampa RP50Q-10 (vista frontal)
Figura 269 - Configuração de ensaio de rampa RP50Q-10 (vista lateral)
Figura 270 - Configuração de ensaio de rampa RP50Q-10 (vista superior) 324
Figura 271 - Configuração de ensaio de rampa RP50R-10 (vista frontal)
Figura 272 - Configuração de ensaio de rampa RP50R-10 (vista lateral)
Figura 273 - Configuração de ensaio de rampa RP50R-10 (vista superior) 326
Figura 274 - Configuração de ensaio de rampa RP100Q-5 (vista frontal)
Figura 275 - Configuração de ensaio de rampa RP100Q-5 (vista lateral)
Figura 276 - Configuração de ensaio de rampa RP100Q-5 (vista superior) 328
Figura 277 - Configuração de ensaio de rampa RP100Q-10 (vista frontal) 329
Figura 278 - Configuração de ensaio de rampa RP100Q-10 (vista lateral)330
Figura 279 - Configuração de ensaio de rampa RP100Q-10 (vista superior) 330
Figura 280 - Configuração de ensaio de cisalhamento direto inclinado CI25Q-10
(vista frontal)
Figura 281 - Configuração de ensaio de cisalhamento direto inclinado CI25Q-10
(vista lateral)
Figura 282 - Configuração de ensaio de cisalhamento direto inclinado CI25Q-10
(vista superior)
Figura 283 - Configuração de ensaio de cisalhamento direto inclinado CI50R-10
(vista frontal)
Figura 284 - Configuração de ensaio de cisalhamento direto inclinado CI50R-10
(vista lateral)
Figura 285 - Configuração de ensaio de cisalhamento direto inclinado CI50R-10
(vista superior)

Figura 286 - Configuração de ensaio de cisalhamento direto inclinado CI100Q-10
(vista frontal)
Figura 287 - Configuração de ensaio de cisalhamento direto inclinado CI100Q-10
(vista lateral)
Figura 288 - Configuração de ensaio de cisalhamento direto inclinado CI100Q-10
(vista superior)
Figura 289 - Configuração de ensaio de cisalhamento direto convencional
CC25Q-10 (vista frontal)
Figura 290 - Configuração de ensaio de cisalhamento direto convencional
CC25Q-10 (vista lateral)
Figura 291 - Configuração de ensaio de cisalhamento direto convencional
CC25Q-10 (vista superior)
Figura 292 - Configuração de ensaio de cisalhamento direto convencional
CC50Q-10 (vista frontal)
Figura 293 - Vista lateral da configuração de cisalhamento direto convencional
CC50Q-10
Figura 294 - Vista superior da configuração de cisalhamento direto convencional
CC50Q-10
Figura 295 - Vista frontal da configuração de cisalhamento direto convencional
CC100Q-10
Figura 296 - Vista lateral da configuração de cisalhamento direto convencional
CC50Q-10
Figura 297 - Vista superior da configuração de cisalhamento direto convencional
CC50Q-10
Figura 298 - Vista frontal da configuração de cisalhamento direto convencional
CC120R-30
Figura 299 - Vista lateral da configuração de cisalhamento direto convencional
CC120R-30
Figura 300 - Vista superior da configuração de cisalhamento direto convencional
CC120R-30
Figura 301 - Configuração de ensaio de arrancamento ArG-1 (vista frontal) 348
Figura 302 - Configuração de ensaio de arrancamento ArG-1 (vista lateral) 349
Figura 303 - Configuração de ensaio de arrancamento ArG-1 (vista superior) 349
Figura 304 - Ângulo crítico ao tombamento - conjunto 1

Figura 305 - Ângulo crítico ao tombamento - conjunto 2	51
Figura 306 - Ângulo crítico ao tombamento - conjunto 3	51
Figura 307 - Ângulo crítico ao tombamento - conjunto 4	52
Figura 308 - Ângulo crítico ao tombamento - conjunto 5	52
Figura 309 - Curva granulométrica do solo silto-argiloso35	54
Figura 310 - Envoltória de resistência obtida dos ensaios de cisalhamento dire	to
(Becker, 2003)	55
Figura 311 - Geossintéticos ensaiados: (a) Geotêxtil, (b) Geogrelha e ((c)
Geomembrana	57
Figura 312 - Curva granulométrica da areia e da brita	58
Figura 313 - Amostras representativas da areia (esquerda) e brita (direita)35	59
Figura 314 - Envoltórias de ruptura da areia	50
Figura 315 - Geossintéticos ensaiados: (a) Geomembrana, (b) Geogrelha36	51
Figura 316 - Curvas granulométricas da areia e da brita	52
Figura 317 - Geossintéticos ensaiados	55
Figura 318 - Análise de distribuição de tensões para o conjunto de caixas o	de
ensaio 1	57
Figura 319 - Análise de distribuição de tensões para o conjunto de caixas o	de
ensaio 2	57
Figura 320 - Análise de distribuição de tensões para o conjunto de caixas o	de
ensaio 3	58
Figura 321 - Análise de distribuição de tensões para o conjunto de caixas o	de
ensaio 4	59
Figura 322 - Análise de distribuição de tensões para o conjunto de caixas o	de
ensaio 5	70
Figura 323 - Critérios de ruptura para solos (Bomfim, 2001)	72

Lista de Tabelas

Tabela 19 - Resumo das características das configurações de ensaio de
Cisalhamento Direto Inclinado151
Tabela 20 - Resumo das características das configurações de ensaio de
cisalhamento direto convencional
Tabela 21 - Resumo das características das configurações de ensaio de
arrancamento
Tabela 22 - Ângulos críticos ao tombamento para o conjunto 1 de caixas de
ensaio169
Tabela 23 - Características granulométricas da areia de Ipanema
Tabela 24 - Características físicas da areia de Ipanema 175
Tabela 25 - Características da Geomembrana CipaGeo (Cipatex, 2003)176
Tabela 26 - Características da Geomembrana Polimanta (Engepol, 2007) 176
Tabela 27 - Características da Geogrelha Fortrac 35/25-20/30 (Huesker, 2003) 177
Tabela 28 - Programa de Ensaios de Rampa194
Tabela 29 - Programa de Ensaios de Cisalhamento Direto195
Tabela 30 - Programa de Ensaios de Cisalhamento Direto Inclinado 195
Tabela 31 - Ensaios utilizados na avaliação do desempenho do equipamento 206
Tabela 32 - Programa de ensaios para estudo da razão comprimento vs altura213
Tabela 33 - Parâmetros de interface obtidos no estudo da influência da relação
L/hL
Tabela 34 - Ensaios de rampa para avaliação da influência das dimensões do
equipamento nos resultados
Tabela 35 - Resumo dos resultados para os ensaios de cisalhamento227
Tabela 36 - Resultados dos ensaios de rampa com faces normais e inclinadas para
as interfaces solo-solo, solo-geogrelha e solo-geomembrana
Tabela 37 - Influência da tensão confinante nos ângulos de rampa na ruptura239
Tabela 38 - Ensaios de rampa para as interfaces areia-areia e $Dr = 15$, 45 e 90%.
Tabela 39 - Ensaios de rampa para as interfaces areia-geogrelha e $Dr = 15, 45$ e
90%
Tabela 40 - Ensaios de rampa para as interfaces areia-geomembrana Cipageo e Dr
= 15, 45 e 90%
Tabela 41 - Ensaios de rampa para as interfaces areia-geomembrana Polimanta e
Dr = 15, 45 e 90%

Tabela 42 - Parâmetros de resistência e eficiência de interação das interfaces, em
ensaios de rampa252
Tabela 43 - Resultados dos ensaios de rampa para as interfaces areia-areia e brita-
brita
Tabela 44 - Resultados dos ensaios de rampa para as interfaces areia-geogrelha e
brita-geogrelha256
Tabela 45 - Resultados dos ensaios de rampa para as interfaces areia-
geomembrana e brita-geomembrana258
Tabela 46 - Parâmetros de resistência e eficiência de interação das interfaces261
Tabela 47 - Comparação entre as interfaces solo-geogrelha e solo-geomembrana
para a tensão confinante de 2,6kPa e Dr=15%, em ensaio de rampa261
Tabela 48 - Comparação entre os parâmetros de resistência das interfaces com Dr
= 15%, em ensaios de rampa
Tabela 49 - Influência da tensão confinante nas tensões cisalhantes de ruptura (Dr
= 15%)
Tabela 50 - Resultados dos ensaios de cisalhamento direto convencional das
interfaces areia-areia e brita-brita
Tabela 51 - Resultados dos ensaios de cisalhamento direto convencional para as
interfaces areia-geogrelha e brita-geogrelha
 interfaces areia-geogrelha e brita-geogrelha

Tabela 59 - Resultados dos ensaios de cisalhamento direto inclinado para as
interfaces areia-geomembrana e brita-geomembrana ($Dr = 15\%$)
Tabela 60 - Parâmetros de resistência e eficiência de interação das interfaces291
Tabela 61 - Comparação entre as interfaces solo-geogrelha e solo-geomembrana
para Dr = 15% e tensão confinante de 1,8kPa294
Tabela 62 - Parâmetros de resistência obtidos para cada interface, com $Dr = 15\%$
Tabela 63 - Resultados dos diferentes ensaios para interfaces Ar15xAr15 298
Tabela 64 - Resultados dos diferentes ensaios para interfaces areia-geogrelha na
Dr=15%
Tabela 65 - Resultados dos diferentes ensaios para interfaces areia-geomembrana
na Dr=15%
Tabela 66 - Resumo das características das configurações de ensaio de rampa . 320
Tabela 67 - Resumo das características das configurações de ensaio de
cisalhamento direto inclinado
Tabela 68 - Resumo das características das configurações de ensaio de
cisalhamento direto inclinado
Tabela 69 - Resumo das características da configuração de ensaio de
arrancamento
Tabela 70 - Características físicas do solo silto-argiloso 353
Tabela 71 - Características do geotêxtil Geofort G300 (Ober, 1999)
Tabela 72 - Características da geogrelha Fortrac 55/25-20/30 (Huesker, 2002).356
Tabela 73 - Características da geomembrana CipaGeo (Cipatex, 2003)356
Tabela 74 - Características granulométricas da areia e da brita 359
Tabela 75 - Características físicas da areia e da brita
Tabela 76 - Características da geomembrana CipaGeo (Cipatex, 2003)
Tabela 77 - Característica da Geogrelha Fortrac 35/25-20/30 (Huesker, 2003).361
Tabela 78 - Características granulométricas da areia e da brita 363
Tabela 79 - Características físicas da areia e da brita
Tabela 80 - Característica da Geomembrana CipaGeo (Cipatex, 2003)
Tabela 81 - Característica da Geomembrana Polimanta (Engepol, 2007)
Tabela 82 - Característica da Geogrelha Fortrac 35/25-20/30 (Huesker, 2003). 365

Lista de Símbolos e Abreviações

а	adesão solo-geossintético
А	área de contato solo-geossintético
b	aresta da base
В	largura do geossintético
c	intercepto coesivo
С	força peso aplicada na plataforma de ensaio
C _c	coeficiente de uniformidade
C_u	coeficiente de curvatura
D	diâmetro
D _{min}	diâmetro mínimo
D _{max}	diâmetro máximo
D ₁₀	diâmetro 10%
D ₃₀	diâmetro 30%
D ₆₀	diâmetro 60%
e	índice de vazios
e _{max}	índice de vazios máximo
e _{min}	índice de vazios mínimo
Dr	densidade relativa
Ec	eficiência de interface em termos de adesão
Ε _φ	eficiência de interface em termos de ângulo de atrito
f	coeficiente de aderência em termos de ângulo de atrito
GCL's	geosynthtetic clay liners
h	altura da amostra de solo ou aresta da base
1	deslocamento
L	comprimento do geossintético
М	momento aplicado
Ν	força normal
Р	força de arrancamento ou peso aplicado
PEAD	polietileno de alta densidade
PET	poliéster

PVA	poliálcool de vinila
PVC	cloreto de polivinila
Q	peso da caixa de ensaio
Т	força cisalhante
$T_{\text{máx}}$	ponto de máxima tração no reforço
Х	ponto de aplicação da força normal na interface ou braço de alavanca
W	peso da amostra
α	inclinação da plataforma de ensaio ou ângulo de rampa
δ	deslocamento da caixa
γ	peso específico
γ_{max}	peso específico máximo
γ_{min}	peso específico mínimo
ø	ângulo de atrito de interfaces solo-solo
ϕ_{sg}	ângulo de atrito de interfaces solo-geossintético
ϕ_{sec}	ângulo de atrito secante
λ	coeficiente de aderência em termos de adesão
θ	ângulo de inclinação do reforço no ensaio de cisalhamento direto com
	reforço inclinado
σ	tensão normal
$\sigma_{máx}$.	tensão normal máxima
$\sigma_{mín}.$	tensão normal mínima
σ_{n}	tensão normal nominal ou inicial
σ_{rup}	tensão normal na ruptura
τ	resistência ao cisalhamento do solo
τ_{sg}	resistência ao cisalhamento entre o solo e o geossintético
$ au_{rup}$	resistência ao cisalhamento na ruptura